All Issue

2020 Vol.39, Issue 6 Preview Page

Research Article

November 2020. pp. 592-599
H. I. Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P.-A. Muller, "Deep learning for time series classification: a review," arXiv: 1809.04356 (2018).
Z. Cui, W. Chen, and Y. Chen, "Multi-scale convolutional neural networks for time series classification," arXiv:1603.06995 (2016).
J. Lee, J. Park, K. L. Kim, and J. Nam, "SampleCNN : End-to-end deep convolutional neural networks using very small filter for music classifications," Applied Science, 8, 150 (2018). 10.3390/app8010150
X. Zeng, D. Zhou, and X. Zeng, "HeartID: A multiresolution convolutional neural network for ECG- based biometric human identification in smart health applications," IEEE Access, 5, 11805-11816 (2017). 10.1109/ACCESS.2017.2707460
K. Choi, G. Fazekas, M. Sandler, and K. Cho, "Convolutional recurrent neural networks for music classification," arXiv:1609.04243v3 (2016). 10.1109/ICASSP.2017.7952585
B. Ku, J. Min, J.-K. Ahn, J. Lee, and H. Ko, "Earthquake event classification using multitasking deep learning," IEEE Geoscience and Remote Sensing Letters, early access, 1-5 (2020). 10.1109/LGRS.2020.2996640
M. Withers, R. Aster, C. Young, J. Beiriger, M. Harris, S. Moore, and J. Trujillo, "A comparison of select trigger algorithms for automated global seismic phase and event detection," Bull. Seismol. Soc. Am. 88, 95-106, (1998).
S. J. Gibbons and F. Ringdal, "The detection of low magnitude seismic events using array-based waveform correlation," Geophys. J. Int. 165, 149-166 (2006). 10.1111/j.1365-246X.2006.02865.x
J. Skoumal, M. R. Brudzinski, B. S. Currie, and J. Levy, "Optimizing multi-station earthquake template matching through re-examination of the Youngstown, Ohio, sequence," Earth and Planet Science Letters, 405, 274-280 (2014). 10.1016/j.epsl.2014.08.033
C. E. Yoon, O. O'Reilly, P. J. Bergen, and G. C. Beroza, "Earthquake detection through computationally efficient similarity search," Science Advances, 1, e1501057 (2015). 10.1126/sciadv.150105726665176PMC4672764
T. Perol, M. Gharbi, and M. Denolle, "Convolutional neural network for earthquake detection and location," Science Advances, 4, e1700578 (2018). 10.1126/sciadv.170057829487899PMC5817932
S. M. Mousavi, W. Zhu, Y. Sheng, and G. C. Beroza, "CRED: A deep residual network of convolutional and recurrent units for earthquake signal detection," arXiv:1810.01965 (2018). 10.1038/s41598-019-45748-131311942PMC6635521
A. Mignan and M. Broccardo, "Neural network applications in earthquake prediction (1994-2019): Meta- analytic insight on their limitations," arXiv:1910.011 78 [cs.NE] (2019). 10.5194/egusphere-egu2020-6851
J. Hu, L. Shen, S. Albanie, G. Sun, and E. Wuf, "Squeeze-and-excitation networks," arXiv:1709.01507 (2017).
S. Hochreiter and J. Schmidhuber, "Long short-term memory," Neural Computation, 9, 1735-1780 (1997). 10.1162/neco.1997.9.8.17359377276
S. Ioffe and C. Szegedy, "Batch normalization: Accelerating deep network training by reducing internal covariate shift," arXiv:1502.03167 (2015).
R. E. Woods and R. C. Gonzalez, Digital Image Processing (Pearson, New York, 2018), pp. 129-130.
N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, "Dropout: A simple way to prevent neural networks from overfitting," J. Machine Learning Research, 15, 1929-1958 (2014).
NECIS,, (Last viewed March 31, 2020).
S. M. Mousavi, Y. Sheng, W. Zhu, and G. C. Beroza, "STanford EArthquake Dataset (STEAD): A global data set of seismic signals for AI," IEEE Access, 7, 179464-179476 (2019). 10.1109/ACCESS.2019.2947848
  • Publisher :The Acoustical Society Of Korea
  • Publisher(Ko) :한국음향학회
  • Journal Title :The Journal of the Acoustical Society of Korea
  • Journal Title(Ko) :한국음향학회지
  • Volume : 39
  • No :6
  • Pages :592-599
  • Received Date :2020. 07. 31
  • Revised Date :2020. 09. 14
  • Accepted Date : 2020. 10. 19