All Issue

2020 Vol.39, Issue 6 Preview Page

Research Article

November 2020. pp. 592-599
Abstract
References
1
H. I. Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P.-A. Muller, "Deep learning for time series classification: a review," arXiv: 1809.04356 (2018).
2
Z. Cui, W. Chen, and Y. Chen, "Multi-scale convolutional neural networks for time series classification," arXiv:1603.06995 (2016).
3
J. Lee, J. Park, K. L. Kim, and J. Nam, "SampleCNN : End-to-end deep convolutional neural networks using very small filter for music classifications," Applied Science, 8, 150 (2018). 10.3390/app8010150
4
X. Zeng, D. Zhou, and X. Zeng, "HeartID: A multiresolution convolutional neural network for ECG- based biometric human identification in smart health applications," IEEE Access, 5, 11805-11816 (2017). 10.1109/ACCESS.2017.2707460
5
K. Choi, G. Fazekas, M. Sandler, and K. Cho, "Convolutional recurrent neural networks for music classification," arXiv:1609.04243v3 (2016). 10.1109/ICASSP.2017.7952585
6
B. Ku, J. Min, J.-K. Ahn, J. Lee, and H. Ko, "Earthquake event classification using multitasking deep learning," IEEE Geoscience and Remote Sensing Letters, early access, 1-5 (2020). 10.1109/LGRS.2020.2996640
7
M. Withers, R. Aster, C. Young, J. Beiriger, M. Harris, S. Moore, and J. Trujillo, "A comparison of select trigger algorithms for automated global seismic phase and event detection," Bull. Seismol. Soc. Am. 88, 95-106, (1998).
8
S. J. Gibbons and F. Ringdal, "The detection of low magnitude seismic events using array-based waveform correlation," Geophys. J. Int. 165, 149-166 (2006). 10.1111/j.1365-246X.2006.02865.x
9
J. Skoumal, M. R. Brudzinski, B. S. Currie, and J. Levy, "Optimizing multi-station earthquake template matching through re-examination of the Youngstown, Ohio, sequence," Earth and Planet Science Letters, 405, 274-280 (2014). 10.1016/j.epsl.2014.08.033
10
C. E. Yoon, O. O'Reilly, P. J. Bergen, and G. C. Beroza, "Earthquake detection through computationally efficient similarity search," Science Advances, 1, e1501057 (2015). 10.1126/sciadv.150105726665176PMC4672764
11
T. Perol, M. Gharbi, and M. Denolle, "Convolutional neural network for earthquake detection and location," Science Advances, 4, e1700578 (2018). 10.1126/sciadv.170057829487899PMC5817932
12
S. M. Mousavi, W. Zhu, Y. Sheng, and G. C. Beroza, "CRED: A deep residual network of convolutional and recurrent units for earthquake signal detection," arXiv:1810.01965 (2018). 10.1038/s41598-019-45748-131311942PMC6635521
13
A. Mignan and M. Broccardo, "Neural network applications in earthquake prediction (1994-2019): Meta- analytic insight on their limitations," arXiv:1910.011 78 [cs.NE] (2019). 10.5194/egusphere-egu2020-6851
14
J. Hu, L. Shen, S. Albanie, G. Sun, and E. Wuf, "Squeeze-and-excitation networks," arXiv:1709.01507 (2017).
15
S. Hochreiter and J. Schmidhuber, "Long short-term memory," Neural Computation, 9, 1735-1780 (1997). 10.1162/neco.1997.9.8.17359377276
16
S. Ioffe and C. Szegedy, "Batch normalization: Accelerating deep network training by reducing internal covariate shift," arXiv:1502.03167 (2015).
17
R. E. Woods and R. C. Gonzalez, Digital Image Processing (Pearson, New York, 2018), pp. 129-130.
18
N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, "Dropout: A simple way to prevent neural networks from overfitting," J. Machine Learning Research, 15, 1929-1958 (2014).
19
NECIS, http://necis.kma.go.kr//, (Last viewed March 31, 2020).
20
S. M. Mousavi, Y. Sheng, W. Zhu, and G. C. Beroza, "STanford EArthquake Dataset (STEAD): A global data set of seismic signals for AI," IEEE Access, 7, 179464-179476 (2019). 10.1109/ACCESS.2019.2947848
Information
  • Publisher :The Acoustical Society Of Korea
  • Publisher(Ko) :한국음향학회
  • Journal Title :The Journal of the Acoustical Society of Korea
  • Journal Title(Ko) :한국음향학회지
  • Volume : 39
  • No :6
  • Pages :592-599
  • Received Date :2020. 07. 31
  • Revised Date :2020. 09. 14
  • Accepted Date : 2020. 10. 19