All Issue

2020 Vol.39, Issue 4 Preview Page

Research Article


July 2020. pp. 246-254
Abstract


References
1 

Y. Chen, K. Lee, B. Ku, S. Kim, and H. Ko, "Analyze the sonar image according to the frequency and altitude of side scan sonar," Proc. Korean Soc. Noise Vib. Eng. 2017, 308 (2017).

2 

M. Aharon and M. Elad, "Image denoising via sparse and redundant representations over learned dictinaries," Proc. IEEE Trans. on Image Process. 15, 3736-3745 (2006).

10.1109/TIP.2006.88196917153947
3 

W. Dong, X. Li, L. Zhang, and G. Shi, "Sparsity-based image denoising via dictionary learning and structural clustersing," Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. 457-464 (2011).

10.1109/CVPR.2011.5995478
4 

J. A. Tropp and A. C. Gilbert, "Signal recovery from random measurements via orthogonal matching pursuit," Proc. IEEE Trans. on information theory, 4655-4666 (2007).

10.1109/TIT.2007.909108
5 

K. Gregor and Y. LeCun, "Learning fast approximations of sparse coding," Proc. 27th International Conf. on Machine Learning, 399-406 (2010).

6 

J. Zhang and B. Ghanem, "ISTA-Net: Interpretable optimization-inspired deep network for image compressive sensing," Proc. IEEE Cof. computer vision and pattern recognition, 1828-1837 (2018).

10.1109/CVPR.2018.00196
7 

K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," Proc. IEEE Cof. computer vision and pattern recognition, 770-778 (2016).

10.1109/CVPR.2016.9026180094
8 

O. Ronneberger, P. Fischer, and T. Brox, "U-net: Convolutional networks for biomedical image segmentation," Proc. IEEE Cof. Medical image computing and computer-assisted intervention, 234-241 (2015).

10.1007/978-3-319-24574-4_28
9 

C. Szegedy, S. Ioffe, V. Vangoucke, and A. Alemi, "Inception-v4, inception-resnet and the impact of residual connections on learning," Proc. Cof. 34th AAAI on Artificial Intelligence, 4278-4284 (2017).

10 

P. Vincent, H. Larochelle, Y. Bengio, and P. Manzagol, "Extracting and composing robust features with denoising autoencoders," Proc. the 25th international Conf. on Machine learning, 1096-1103 (2008).

10.1145/1390156.1390294
11 

D. P. Kingma and J. Ba, "Adam: A method for stochastic optimization," arXiv preprint, 1412.6980 (2014).

12 

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, "Image denoising by sparse 3-D transform domain collavorative filtering," Proc. IEEE Trans. on Image Processing, 16, 2080-2095 (2007).

10.1109/TIP.2007.90123817688213
13 

K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, "Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising," Proc. IEEE Trans. on Image Processing, 26, 3142-3155 (2017).

10.1109/TIP.2017.266220628166495
Information
  • Publisher :The Acoustical Society Of Korea
  • Publisher(Ko) :한국음향학회
  • Journal Title :The Journal of the Acoustical Society of Korea
  • Journal Title(Ko) :한국음향학회지
  • Volume : 39
  • No :4
  • Pages :246-254
  • Received Date :2020. 04. 09
  • Revised Date :2020. 05. 22
  • Accepted Date : 2020. 05. 26