All Issue

2023 Vol.42, Issue 6 Preview Page

Research Article

30 November 2023. pp. 544-551
J. Lim and A. Oppenheim, "All-pole modeling of degraded speech," IEEE Trans. Acoust. Speech Signal Process. 26, 197-210 (1978). 10.1109/TASSP.1978.1163086
S. Boll, "Suppression of acoustic noise in speech using spectral subtraction," IEEE Trans. Acoust. Speech Signal Process. 27, 113-120 (1979). 10.1109/TASSP.1979.1163209
K. Tan and D. Wang, "A convolutional recurrent neural network for real-time speech enhancement," Proc. Interspeech, 3229-3233 (2018). 10.21437/Interspeech.2018-140530200723
Y. Hu, Y. Liu, S. Lv, M. Xing, S. Zhang, Y. Fu, J. Wu, B. Zhang, and L. Xie, "DCCRN: Deep complex convolution recurrent network for phase-aware speech enhancement," Proc. Interspeech, 2472-2476 (2020). 10.21437/Interspeech.2020-2537PMC7553560
H. S. Choi, J. H. Kim, J. Huh, A. Kim, J. W. Ha, and K. Lee, "Phase-aware speech enhancement with deep complex u-net," Proc. ICLR, 1-20 (2019).
D. Wang and J. Chen, "Supervised speech separation based on deep learning: An overview," IEEE/ACM Trans. Audio, Speech, Language Process. 26, 1702-1726 (2018). 10.1109/TASLP.2018.284215931223631PMC6586438
K. Paliwal, K. Wójcicki, and B. Shannon, "The importance of phase in speech enhancement," Speech Communication, 53, 465-494 (2011). 10.1016/j.specom.2010.12.003
Y. Wang and D. L. Wang, "A deep neural network for time-domain signal reconstruction," Proc. ICASSP, 4390-4394 (2015). 10.1109/ICASSP.2015.7178800
A. Li, C. Zheng, C. Fan, R. Peng, and X. Li, "A recursive network with dynamic attention for monaural speech enhancement," Proc. Interspeech, 2422-2426 (2020). 10.21437/Interspeech.2020-1513
Y. Koizumi, K. Yatabe, M. Delcroix, Y. Masuyama, and D. Takeuchi, "Speech enhancement using self-adaptation and multi-head self-attention," Proc. ICASSP, 181-185 (2020). 10.1109/ICASSP40776.2020.9053214
Z. Qiquan, S. Qi, N. Zhaoheng, N. Aaron, and L. Haizhou, "Time-Frequency Attention for Monaural Speech Enhancement," Proc. ICASSP, 7852-7856 (2022).
O. Oktay, J. Schlemper, L. L. Folgoc, M. Lee, M. Heinrich, K. Misawa, K. Mori, S. McDonagh, N. Y. Hammerla, B. Kainz, B. Glocker, and D. Rueckert, "Attention u-net: Learning where to look for the pancreas," Proc. MIDL, 1-10 (2018).
Y. Luo and N. Mesgarani, "Conv-tasnet: Surpassing ideal time-frequency magnitude masking for speech separation," IEEE/ACM Trans. Audio, Speech, Language Process. 27, 1256-1266 (2019). 10.1109/TASLP.2019.291516731485462PMC6726126
J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus, D. S. Pallett, and N. L. Dahlgren, "Acoustic-phonetic continuous speech corpus CD-ROM NIST speech disc 1-1.1," DARPA TIMIT, NIST Interagenct/Internal Rep., (NISTIR) 4930, 1993. 10.6028/NIST.IR.4930
E. Vincent, R. Gribonval, and C. Févotte, "Performance measurement in blind audio source separation," IEEE Trans. Audio, Speech, Language Process. 14, 1462-1469 (2006). 10.1109/TSA.2005.858005
A. W. Rix, J. G. Beerends, M. P. Hollier, and A. P. Hekstra, "Perceptual evaluation of speech quality (PESQ)-a new method for speech quality assessment of telephone networks and codecs," Proc. ICASSP, 749-752 (2001).
C. H. Taal, R. C. Hendriks, and R. Heusdens, "A short-time objective intelligibility measure for time-frequency weighted noisy speech," Proc. ICASSP, 4214-4217 (2010). 10.1109/ICASSP.2010.5495701
O. Ronneberger, P. Fischer, and T. Brox, "U-net: Convolutional networks for biomedical image segmentation," Proc. MICCAI, 234-241 (2015). 10.1007/978-3-319-24574-4_28
  • Publisher :The Acoustical Society of Korea
  • Publisher(Ko) :한국음향학회
  • Journal Title :The Journal of the Acoustical Society of Korea
  • Journal Title(Ko) :한국음향학회지
  • Volume : 42
  • No :6
  • Pages :544-551
  • Received Date : 2023-08-08
  • Accepted Date : 2023-09-08