All Issue

2020 Vol.39, Issue 1 Preview Page

Research Article


January 2020. pp. 64-68
Abstract


References
1 

J. Li, L. Deng, Y. Gong, and R. Haeb-Umbach, "An overview of noise-robust automatic speech recognition," IEEE/ACM Trans. Audio, Speech, Language Process, 22, 745-777 (2014).

10.1109/TASLP.2014.2304637
2 

Z. Zhang, J. Geiger, A. Mousa, J. Pohjalainena, W. Jin, and B. Schuller, "Deep learning for environmentally robust speech recognition: an overview of recent developments," ACM Trans. Intell. Syst. Tech. 9, 1-12 (2018).

10.1145/3178115
3 

M. L. Seltzer, D. Yu, and Y. Wang, " An investigation of deep neural networks for noise robust speech recognition," Proc. IEEE Int. Conf. Acoust. Speech, Signal Process, 7398-7402 (2013).

10.1109/ICASSP.2013.6639100
4 

B. K. Choi, S. M. Ban, and H. S. Kim, "Cepstral feature normalization methods using pole filtering and scale normalization for robust speech recognition" (in Korean), J. Acoust. Soc. Kr. 34, 316-320 (2015).

10.7776/ASK.2015.34.4.316
5 

B. K. Choi, S. M. Ban, and H. S. Kim, "Selective pole filtering based feature normalization for performance improvement of short utterance recognition in noisy environments" (in Korean), Phonetics and Speech Sciences, 9, 103-110 (2017).

6 

D. Naik, "Pole-filtered cepstral mean subtraction," Proc. IEEE Int. Conf. Acoust. Speech, Signal Process, 157-160 (1995).

7 

H. G. Hirsch and D. Pearce, "The AURORA experimental framework for the performance evaluations of speech recognition systems under noisy conditions," Proc. ISCA ITRW ASR2000, 181-188 (2000).

8 

Kaldi Speech Recognition Toolkit, https://kaldi-asr. org/, (Last viewed January 06, 2020).

Information
  • Publisher :The Acoustical Society Of Korea
  • Publisher(Ko) :한국음향학회
  • Journal Title :The Journal of the Acoustical Society of Korea
  • Journal Title(Ko) :한국음향학회지
  • Volume : 39
  • No :1
  • Pages :64-68
  • Received Date :2019. 12. 02
  • Accepted Date : 2019. 12. 26