All Issue

2020 Vol.39, Issue 3 Preview Page

Research Article


May 2020. pp. 151-162
Abstract


References
1 

C. S. Clay and H. Medwin, Acoustical Oceanography: Principles and Applications (John Wiley & Sons, New York, 1977), pp. 461-475.

2 

B. Würsig, C. R. Greene, and T. A. Jefferson, "Development of an air bubble curtain to reduce underwater noise of percussive piling," Marine Environmental Research, 49, 79-93 (2000).

10.1016/S0141-1136(99)00050-1
3 

J. C. Kim, B. H. Heo, and D. S. Cho, "Noise reduction effect of an air bubble layer on an infinite flat plate considering the noise of multi-bubbles" (in Korean), Trans. Korean Soc. Noise Vib. Eng. 1222-1230 (2009).

10.5050/KSNVN.2009.19.11.1222
4 

W. S. Ross, P. J. Lee, S. E. Heiney, and J. V. Young, "Mitigating seismic noise with an acoustic blanker- the promise and the challenge," The Leading Edge, March, 24, 303-313 (2005).

10.1190/1.1895317
5 

S. N. Domenico, "Acoustic wave propagation in air- bubble curtains in water- Part I: History and theory," Geophysics, 47, 345-353 (1982).

10.1190/1.1441340
6 

J. Wu, "Bubble population and spectra in near-surface ocean: Summary and review of field measurements," J. Geophysical Research 86, 457-463 (1981).

10.1029/JC086iC01p00457
7 

J. C. Novarini, R. S. Keiffer, and G. V. Norton, "A model for variations in the range and depth dependence of the sound speed and attenuation induced by bubble clouds under wind-driven sea surfaces," IEEE J. Oceanic Eng. 23, 423-438 (1998).

10.1109/48.725236
8 

H. Medwin, "Acoustical determination of bubble-size spectra," J. Acoust. Soc. Am. 62, 1041-1044 (1977).

10.1121/1.381617
9 

K. Commander and E. Moritz, "Off-resonance contributions to acoustical bubble spectra," J. Acoust. Soc. Am. 85, 2665-2669 (1989).

10.1121/1.397763
10 

K. W. Commander and R. J. McDonald, "Finite-element solution of the inverse problem in bubble swarm acostics," J. Acoust. Soc. Am. 89, 592-597 (1991).

10.1121/1.400671
11 

J. W. Caruthers, P. A. Elmore, J. C. Novarini, and R. R. Goodman, "An iterative approach for approximating bubble distributions from attenuation measurements," J. Acoust. Soc. Am. 106, 185-189 (1999).

10.1121/1.427047
12 

D. Rajan, An inverse method for obtaining the attenuation profile and small variations in the sound speed and density profiles of the ocean bottom, (Ph.D. thesis, MIT, 1985).

10.1575/1912/3986
13 

P. Gerstoft, "Inversion of seimoacoustic data using genetic algorithms and a posteriori probability distributions," J. Acoust. Soc. Am. 95, 770-782 (1994).

10.1121/1.408387
14 

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes (Cambridge University Press, Cambridge, 2007), Chap. 15.5.

15 

M. Cui, Y. Zhao, B. Xu, and X. Gao, "A new approach for determining damping factors in Levenberg-Marquardt algorithms for solving an inverse heat conduction problem," Int. J. Heat and Mass Transfer 107, 747-754 (2017).

10.1016/j.ijheatmasstransfer.2016.11.101
16 

F. D. Nunno, F. A. Pereira, M. Miozzi, F. Granata, R. Gargano, G. de Marianis, and F. D. Felice, "Air bubble size and velocity measurement in a vertical plunging jet using a volumetric shadowgraphy technique," Proc. AMT19, 1-9 (2019).

17 

F. Macintyre, "On reconciling optical and acoustical bubble spectra in the mixed layer," in Handbook of Ocean Whitecaps, edited by E. C. Monohan and G. MacNiocaill (Reidel, New York, 1986). 75-94.

10.1007/978-94-009-4668-2_8
Information
  • Publisher :The Acoustical Society Of Korea
  • Publisher(Ko) :한국음향학회
  • Journal Title :The Journal of the Acoustical Society of Korea
  • Journal Title(Ko) :한국음향학회지
  • Volume : 39
  • No :3
  • Pages :151-162
  • Received Date :2020. 03. 16
  • Accepted Date : 2020. 04. 08