All Issue

2020 Vol.39, Issue 4 Preview Page

Research Article


July 2020. pp. 292-302
Abstract


References
1 

J. Choi, Y. Choo, and K. Lee, "Acoustic classification of surface and underwater vessels in the ocean using supervised machine learning," Sensors, 19, 3492 (2019).

10.3390/s1916349231404999PMC6721123
2 

A. Tesei, S. Fioravanti, V. Grandi, P. Guerrini, and A. Maguer, "Localization of small surface vessels through acoustic data fusion of two tetrahedral arrays of hydrophones," Proc. Meetings on Acoustics, 17, 070050 (2012).

10.1121/1.4772778
3 

R. Diamant and Y. Jin, "A machine learning approach for dead-reckoning navigation at sea using a single accelerometer," IEEE J. Oceanic Engineering, 39, 672-684 (2013).

10.1109/JOE.2013.2279421
4 

Y. Tan, J. K. Tan, H. S. Kim, and S. Ishikawa, "Detection of underwater objects based on machine learning," Proc. The SICE Annual Conference 2013, IEEE 2104-2109 (2013).

5 

H. Yang, K. Lee, Y. Choo, and K. Kim, "Underwater acoustic research trends with machine learning: Passive SONAR applications," JOET. 34, 227-236 (2020).

10.26748/KSOE.2020.017
6 

C. Albaladejo, F. Soto, R. Torres, P. Sánchez, and J. A. López, "A low-cost sensor buoy system for monitoring shallow marine environments," Sensors, 12, 9613-9634 (2012).

10.3390/s12070961323012562PMC3444120
7 

D. G. Hathaway and R. M. Bridges, "Underwater sonar array," U.S. Patent 4901287, 1990.

8 

H. Yang, K. Lee, Y. Choo, and K. Kim, "Underwater Acoustic Research Trends with Machine Learning: General Background," JOET. 34, 147-154 (2020).

10.26748/KSOE.2020.015
9 

J. Schluter and T. Grill, "Exploring data augmentation for improved singing voice detection with neural networks," Proc. ISMIR. 121-126 (2015).

10 

B. McFee, E. J. Humphrey, and J. P. Bello, "A software framework for musical data augmentation," Proc. ISMIR. 248-254 (2015).

11 

N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, "SMOTE: synthetic minority over-sampling technique," JAIR. 16, 321-357 (2002).

10.1613/jair.953
12 

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. WardeFarley, S. Ozair, A. Courville, and Y. Bengio, "Generative adversarial nets," Proc. NPIS. 2672-2680 (2014).

13 

C. Donahue, J. McAuley, and M. Puckette, "Adversarial audio synthesis," arXiv preprint arXiv:1802.04208 (2018).

14 

S. Mangal, R. Modak, and P. Joshi, "LSTM Based Music Generation System," arXiv preprint arXiv:1908. 01080 (2019).

10.17148/IARJSET.2019.6508
15 

F. H. K. dos S. Tanaka and C. Aranha, "Data augmentation using GANs," arXiv preprint arXiv:1904.09135 (2019).

16 

Y. Qian, H. Hu, and T. Tan, "Data augmentation using generative adversarial networks for robust speech recognition," Speech Communication, 114, 1-9 (2019).

10.1016/j.specom.2019.08.006
17 

J.-Y., Zhu, T. Park, P. Isola, and A. A. Efros, "Unpaired image-to-image translation using cycle-consistent adversarial networks," Proc. the IEEE int. conf. on computer vision, 2223-2232 (2017).

10.1109/ICCV.2017.244
18 

V. Sandfort, K. Yan, P. J. Pickhardt, and R. M. Summers, "Data augmentation using generative adversarial networks (CycleGAN) to improve generalizability in CT segmentation tasks," Scientific reports, 9, 1-9 (2019).

10.1038/s41598-019-52737-x31729403PMC6858365
19 

T. Kaneko and H. Kameoka, "Parallel data-free voice conversion using cycle-consistent adversarial networks," arXiv:1711.11293 (2017).

10.23919/EUSIPCO.2018.8553236
20 

S. H. Dumpala, I. Sheikh, R. Chakraborty, and S. K. Kopparapu, "A Cycle-GAN approach to model natural perturbations in speech for ASR applications," arXiv preprint arXiv:1912.11151 (2019).

21 

T. Kaneko and H. Kameoka, "Cyclegan-vc: Non- parallel voice conversion using cycle-consistent adversarial networks," Proc. 26th EUSIPCO. IEEE 2100- 2104 (2018).

10.23919/EUSIPCO.2018.8553236
22 

Y. N. Dauphin, A. Fan, M. Auli, and D. Grangier, "Language modeling with gated convolutional networks," Proc. ICML. 933-941 (2017).

23 

Y. Taigman, A. Polyak, L. Wolf, "Unsupervised cross- domain image generation," Proc. ICLR. arXiv preprint arXiv:1607.08022 (2017).

24 

D. Ulyanov, A. Vedaldi, and V. S. Lempitsky. Instance normalization: The missing ingredient for fast stylization. CoRR. abs/1607.08022 (2016).

25 

F. Yu and V. Koltun, "Multi-scale context aggregation by dilated convolutions," CoRR. abs/1511.07122 (2015).

26 

A. Odena, V. Dumoulin, and C. Olah, "Deconvolution and checkerboard artifacts," Distill, 1, e3 (2016).

10.23915/distill.00003
27 

U. Demir and G. Unal, "Patch-based image inpainting with generative adversarial networks," arXiv preprint arXiv:1803.07422 (2018).

28 

J. Luo and Y. Yang, "Simulation model of ship- radiated broadband noise." Proc. IEEE ICSPCC. 1-5 (2011).

10.1109/ICSPCC.2011.6061632
29 

C. Verron and G. Drettakis, "Procedural audio modeling for particle-based environmental effects," 133rd AES Convention (2012).

30 

CycleGAN with Better Cycles, https://ssnl.github.io/ better_cycles/report.pdf, (Last viewed July 21, 2020).

31 

D. Santos-Domínguez, S. Torres-Guijarro, A. Cardenal- López, and A. Pena-Gimenez, "ShipsEar: An underwater vessel noise database," Applied Acoustics, 113, 64-69 (2016).

10.1016/j.apacoust.2016.06.008
32 

J. Nirmal, P. Kachare, S. Patnaik, and M. Zaveri, "Cepstrum liftering based voice conversion using RBF and GMM," Proc. ICCSP. IEEE 570-575 (2013).

10.1109/iccsp.2013.6577119
33 

W. Zhou, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image qualifty assessment: from error visibility to structural similarity," IEEE Trans. on Image Processing, 13, 600-612 (2004).

10.1109/TIP.2003.81986115376593
34 

M. Chu and H. Peng, "Objective measure for estimating mean opinion score of synthesized speech," U.S. Patent 7024362, 2006.

Information
  • Publisher :The Acoustical Society Of Korea
  • Publisher(Ko) :한국음향학회
  • Journal Title :The Journal of the Acoustical Society of Korea
  • Journal Title(Ko) :한국음향학회지
  • Volume : 39
  • No :4
  • Pages :292-302
  • Received Date :2020. 06. 09
  • Accepted Date : 2020. 06. 30